
abimap
Release 0.3.0

Aug 03, 2018

Contents

1 abimap 3
1.1 Why use symbol versioning? . 3
1.2 How to add symbol versioning to my library? . 3
1.3 Installation: . 4
1.4 Usage: . 5
1.5 tl;dr . 5
1.6 Long version . 5
1.7 Import as a library: . 8
1.8 Documentation: . 8
1.9 References: . 8

2 Installation 9

3 Usage 11
3.1 tl;dr . 11
3.2 Long version . 12
3.3 Import as a library: . 14

4 Reference 15
4.1 abimap package . 15
4.2 abimap . 20

5 Contributing 21
5.1 Types of Contributions . 21
5.2 Get Started! . 22
5.3 Pull Request Guidelines . 23
5.4 Tips . 23
5.5 Deploying . 23

6 Credits 25
6.1 Development Lead . 25
6.2 Contributors . 25

7 Changelog 27
7.1 0.3.0 (2018-08-03) . 27
7.2 0.2.5 (2018-07-26) . 27
7.3 0.2.4 (2018-06-15) . 27

i

7.4 0.2.3 (2018-06-15) . 27
7.5 0.2.2 (2018-06-01) . 28
7.6 0.2.1 (2018-05-30) . 28
7.7 0.2.0 (2018-05-29) . 28
7.8 0.1.0 (2018-05-09) . 28

8 Indices and tables 29

Bibliography 31

Python Module Index 33

ii

abimap, Release 0.3.0

Contents 1

https://travis-ci.org/ansasaki/abimap
https://coveralls.io/github/ansasaki/abimap?branch=master
https://codecov.io/github/ansasaki/abimap

abimap, Release 0.3.0

2 Contents

CHAPTER 1

abimap

A helper for library maintainers to use symbol versioning

1.1 Why use symbol versioning?

The main reason is to be able to keep the library [ABI] stable.

If a library is intended to be used for a long time, it will need updates for eventual bug fixes and/or improvement. This
can lead to changes in the [API] and, in the worst case, changes to the [ABI].

Using symbol versioning, it is possible to make compatible changes and keep the applications working without recom-
piling. If incompatible changes were made (breaking the [ABI]), symbol versioning allows both incompatible versions
to live in the same system without conflict. And even more uncommon situations, like an application to be linked to
different (incompatible) versions of the same library.

For more information, I strongly recommend reading:

• [HOW_TO] How to write shared libraries, by Ulrich Drepper

1.2 How to add symbol versioning to my library?

Adding version information to the symbols is easy. Keeping the [ABI] stable, unfortunately, is not. This project intends
to help in the first part.

To add version information to symbols of a library, one can use version scripts (in Linux). Version scripts are files used
by linkers to map symbols to a given version. It contains the symbols exported by the library grouped by the releases
where they were introduced. For example:

LIB_EXAMPLE_1_0_0
{
global:

symbol;

(continues on next page)

3

abimap, Release 0.3.0

(continued from previous page)

another_symbol;
local:

*;
};

In this example, the release LIB_EXAMPLE_1_0_0 introduces the symbols symbol and another_symbol. The
*wildcard in local catches all other symbols, meaning only symbol and another_symbol are globally exported
as part of the library [API].

If a compatible change is made, it would introduce a new release, like:

LIB_EXAMPLE_1_1_0
{

global:
new_symbol;

} LIB_EXAMPLE_1_0_0;

LIB_EXAMPLE_1_0_0
{

global:
symbol;
another_symbol;

local:

*;
};

The new release LIB_EXAMPLE_1_1_0 introduces the symbol new_symbol. The * wildcard should be only in
one version, usually in the oldest version. The } LIB_EXAMPLE_1_0_0; part in the end of the new release means
the new release depends on the old release.

Suppose a new incompatible version LIB_EXAMPLE_2_0_0 released after LIB_EXAMPLE_1_1_0. Its map would
look like:

LIB_EXAMPLE_2_0_0
{

global:
a_newer_symbol;
another_symbol;
new_symbol;

local:

*;
};

The symbol symbol was removed (and that is why it was incompatible). And a new symbol was introduced,
a_newer_symbol.

Note that all global symbols in all releases were merged in a unique new release.

1.3 Installation:

At the command line:

pip install abimap

4 Chapter 1. abimap

abimap, Release 0.3.0

1.4 Usage:

This project delivers a script, abimap. This is my first project in python, so feel free to point out ways to improve it.

The sub-commands update and new expect a list of symbols given in stdin. The list of symbols are words separated
by non-alphanumeric characters (matches with the regular expression [a-zA-Z0-9_]+). For example:

symbol, another, one_more

and:

symbol
another
one_more

are valid inputs.

The last sub-command, check, expects only the path to the map file to be checked.

1.5 tl;dr

$ abimap update lib_example.map < symbols_list

or (setting an output):

$ abimap update lib_example.map -o new.map < symbols_list

or:

$ cat symbols_list | abimap update lib_example.map -o new.map

or (to create a new map):

$ cat symbols_list | abimap new -r lib_example_1_0_0 -o new.map

or (to check the content of a existing map):

$ abimap check my.map

or (to check the current version):

$ abimap version

1.6 Long version

Running abimap -h will give:

usage: abimap [-h] {update,new,check,version} ...

Helper tools for linker version script maintenance

optional arguments:

(continues on next page)

1.4. Usage: 5

abimap, Release 0.3.0

(continued from previous page)

-h, --help show this help message and exit

Subcommands:
{update,new,check,version}

These subcommands have their own set of options
update Update the map file
new Create a new map file
check Check the map file
version Print version

Call a subcommand passing '-h' to see its specific options

Call a subcommand passing ‘-h’ to see its specific options There are four subcommands, update, new, check, and
version

Running abimap update -h will give:

usage: abimap update [-h] [-o OUT] [-i INPUT] [-d]
[--verbosity {quiet,error,warning,info,debug} | --quiet | --

→˓debug]
[-l LOGFILE] [-n NAME] [-v VERSION] [-r RELEASE]
[--no_guess] [--allow-abi-break] [-f] [-a | --remove]
file

positional arguments:
file The map file being updated

optional arguments:
-h, --help show this help message and exit
-o OUT, --out OUT Output file (defaults to stdout)
-i INPUT, --in INPUT Read from this file instead of stdio
-d, --dry Do everything, but do not modify the files
--verbosity {quiet,error,warning,info,debug}

Set the program verbosity
--quiet Makes the program quiet
--debug Makes the program print debug info
-l LOGFILE, --logfile LOGFILE

Log to this file
-n NAME, --name NAME The name of the library (e.g. libx)
-v VERSION, --version VERSION

The release version (e.g. 1_0_0 or 1.0.0)
-r RELEASE, --release RELEASE

The full name of the release to be used (e.g.
LIBX_1_0_0)

--no_guess Disable next release name guessing
--allow-abi-break Allow removing symbols, and to break ABI
-f, --final Mark the modified release as final, preventing later

changes.
-a, --add Adds the symbols to the map file.
--remove Remove the symbols from the map file. This breaks the

ABI.

A list of symbols is expected as the input. If a file is provided with '-i',
the symbols are read from the given file. Otherwise the symbols are read from
stdin.

Running abimap new -h will give:

6 Chapter 1. abimap

abimap, Release 0.3.0

usage: abimap new [-h] [-o OUT] [-i INPUT] [-d]
[--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
[-l LOGFILE] [-n NAME] [-v VERSION] [-r RELEASE]
[--no_guess] [-f]

optional arguments:
-h, --help show this help message and exit
-o OUT, --out OUT Output file (defaults to stdout)
-i INPUT, --in INPUT Read from this file instead of stdio
-d, --dry Do everything, but do not modify the files
--verbosity {quiet,error,warning,info,debug}

Set the program verbosity
--quiet Makes the program quiet
--debug Makes the program print debug info
-l LOGFILE, --logfile LOGFILE

Log to this file
-n NAME, --name NAME The name of the library (e.g. libx)
-v VERSION, --version VERSION

The release version (e.g. 1_0_0 or 1.0.0)
-r RELEASE, --release RELEASE

The full name of the release to be used (e.g.
LIBX_1_0_0)

--no_guess Disable next release name guessing
-f, --final Mark the new release as final, preventing later

changes.

A list of symbols is expected as the input. If a file is provided with '-i',
the symbols are read from the given file. Otherwise the symbols are read from
stdin.

Running abimap check -h will give:

usage: abimap check [-h]
[--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
[-l LOGFILE]
file

positional arguments:
file The map file to be checked

optional arguments:
-h, --help show this help message and exit
--verbosity {quiet,error,warning,info,debug}

Set the program verbosity
--quiet Makes the program quiet
--debug Makes the program print debug info
-l LOGFILE, --logfile LOGFILE

Log to this file

Running abimap version -h will give:

usage: abimap version [-h]

optional arguments:
-h, --help show this help message and exit

1.6. Long version 7

abimap, Release 0.3.0

1.7 Import as a library:

To use abimap in a project as a library:

from abimap import symver

1.8 Documentation:

Check in Read the docs

1.9 References:

8 Chapter 1. abimap

http://abimap.readthedocs.io/en/latest/index.html

CHAPTER 2

Installation

At the command line:

pip install abimap

9

abimap, Release 0.3.0

10 Chapter 2. Installation

CHAPTER 3

Usage

This project delivers a script, abimap. This is my first project in python, so feel free to point out ways to improve it.

The sub-commands update and new expect a list of symbols given in stdin. The list of symbols are words separated
by non-alphanumeric characters (matches with the regular expression [a-zA-Z0-9_]+). For example:

symbol, another, one_more

and:

symbol
another
one_more

are valid inputs.

The last sub-command, check, expects only the path to the map file to be checked.

3.1 tl;dr

$ abimap update lib_example.map < symbols_list

or (setting an output):

$ abimap update lib_example.map -o new.map < symbols_list

or:

$ cat symbols_list | abimap update lib_example.map -o new.map

or (to create a new map):

$ cat symbols_list | abimap new -r lib_example_1_0_0 -o new.map

11

abimap, Release 0.3.0

or (to check the content of a existing map):

$ abimap check my.map

or (to check the current version):

$ abimap version

3.2 Long version

Running abimap -h will give:

usage: abimap [-h] {update,new,check,version} ...

Helper tools for linker version script maintenance

optional arguments:
-h, --help show this help message and exit

Subcommands:
{update,new,check,version}

These subcommands have their own set of options
update Update the map file
new Create a new map file
check Check the map file
version Print version

Call a subcommand passing '-h' to see its specific options

Call a subcommand passing ‘-h’ to see its specific options There are four subcommands, update, new, check, and
version

Running abimap update -h will give:

usage: abimap update [-h] [-o OUT] [-i INPUT] [-d]
[--verbosity {quiet,error,warning,info,debug} | --quiet | --

→˓debug]
[-l LOGFILE] [-n NAME] [-v VERSION] [-r RELEASE]
[--no_guess] [--allow-abi-break] [-f] [-a | --remove]
file

positional arguments:
file The map file being updated

optional arguments:
-h, --help show this help message and exit
-o OUT, --out OUT Output file (defaults to stdout)
-i INPUT, --in INPUT Read from this file instead of stdio
-d, --dry Do everything, but do not modify the files
--verbosity {quiet,error,warning,info,debug}

Set the program verbosity
--quiet Makes the program quiet
--debug Makes the program print debug info
-l LOGFILE, --logfile LOGFILE

Log to this file
-n NAME, --name NAME The name of the library (e.g. libx)

(continues on next page)

12 Chapter 3. Usage

abimap, Release 0.3.0

(continued from previous page)

-v VERSION, --version VERSION
The release version (e.g. 1_0_0 or 1.0.0)

-r RELEASE, --release RELEASE
The full name of the release to be used (e.g.
LIBX_1_0_0)

--no_guess Disable next release name guessing
--allow-abi-break Allow removing symbols, and to break ABI
-f, --final Mark the modified release as final, preventing later

changes.
-a, --add Adds the symbols to the map file.
--remove Remove the symbols from the map file. This breaks the

ABI.

A list of symbols is expected as the input. If a file is provided with '-i',
the symbols are read from the given file. Otherwise the symbols are read from
stdin.

Running abimap new -h will give:

usage: abimap new [-h] [-o OUT] [-i INPUT] [-d]
[--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
[-l LOGFILE] [-n NAME] [-v VERSION] [-r RELEASE]
[--no_guess] [-f]

optional arguments:
-h, --help show this help message and exit
-o OUT, --out OUT Output file (defaults to stdout)
-i INPUT, --in INPUT Read from this file instead of stdio
-d, --dry Do everything, but do not modify the files
--verbosity {quiet,error,warning,info,debug}

Set the program verbosity
--quiet Makes the program quiet
--debug Makes the program print debug info
-l LOGFILE, --logfile LOGFILE

Log to this file
-n NAME, --name NAME The name of the library (e.g. libx)
-v VERSION, --version VERSION

The release version (e.g. 1_0_0 or 1.0.0)
-r RELEASE, --release RELEASE

The full name of the release to be used (e.g.
LIBX_1_0_0)

--no_guess Disable next release name guessing
-f, --final Mark the new release as final, preventing later

changes.

A list of symbols is expected as the input. If a file is provided with '-i',
the symbols are read from the given file. Otherwise the symbols are read from
stdin.

Running abimap check -h will give:

usage: abimap check [-h]
[--verbosity {quiet,error,warning,info,debug} | --quiet | --debug]
[-l LOGFILE]
file

positional arguments:
(continues on next page)

3.2. Long version 13

abimap, Release 0.3.0

(continued from previous page)

file The map file to be checked

optional arguments:
-h, --help show this help message and exit
--verbosity {quiet,error,warning,info,debug}

Set the program verbosity
--quiet Makes the program quiet
--debug Makes the program print debug info
-l LOGFILE, --logfile LOGFILE

Log to this file

Running abimap version -h will give:

usage: abimap version [-h]

optional arguments:
-h, --help show this help message and exit

3.3 Import as a library:

To use abimap in a project as a library:

from abimap import symver

14 Chapter 3. Usage

CHAPTER 4

Reference

4.1 abimap package

4.1.1 Submodules

4.1.2 abimap.main module

Entrypoint used to generate the command line application

abimap.main.main()

4.1.3 abimap.symver module

class abimap.symver.Map(filename=None, logger=None)
Bases: object

A linker map (version script) representation

This class is an internal representation of a version script. It is intended to be initialized by calling the method
read() and passing the path to a version script file. The parser will parse the file and check the file syntax,
creating a list of releases (instances of the Release class), which is stored in releases.

Variables

• init – Indicates if the object was initialized by calling read()

• logger – The logger object; can be specified in the constructor

• filename – Holds the name (path) of the file read

• lines – A list containing the lines of the file

all_global_symbols()
Returns all global symbols from all releases contained in the Map object

Returns A set containing all global symbols in all releases

15

abimap, Release 0.3.0

check()
Check the map structure.

Reports errors found in the structure of the map in form of warnings.

dependencies()
Construct the dependencies lists

Contruct a list of dependency lists. Each dependency list contain the names of the releases in a dependency
path. The heads of the dependencies lists are the releases not refered as a previous release in any release.

Returns A list containing the dependencies lists

duplicates()
Find and return a list of duplicated symbols for each release

If no duplicates are found, return an empty list

Returns A list of tuples [(release, [(scope, [duplicates])])]

guess_latest_release()
Try to guess the latest release

It uses the information found in the releases present in the version script read. It tries to find the latest
release using heuristics.

Returns A list [release, prefix, suffix, version[CUR, AGE, REV]]

guess_name(new_release, abi_break=False, guess=False)
Use the given information to guess the name for the new release

The two parts necessary to make the release name:

• The new prefix: Usually the library name (e.g. LIBX)

• The new suffix: The version information (e.g. _1_2_3)

If the new release is not provided, try a guess strategy:

If the new prefix is not provided:

1. Try to find a common prefix between release names

2. Try to find latest release

If the new suffix is not provided:

1. Try to find latest release version and bump

Parameters

• new_release – String, the name of the new release. If this is

• abi_break – Boolean, indicates if the ABI was broken

• guess – Boolean, indicates if should try to guess

Returns The guessed release name (new prefix + new suffix)

parse(lines)
A simple version script parser.

This is the main initializator of the releases list. This simple parser receives the lines of a given version
script, check its syntax, and construct the list of releases. Some semantic aspects are checked, like the
existence of the * wildcard in global scope and the existence of duplicated release names.

It works by running a finite state machine:

16 Chapter 4. Reference

abimap, Release 0.3.0

The parser states. Can be:

0. name: The parser is searching for a release name or EOF

1. opening: The parser is searching for the release opening {

2. element: The parser is searching for an identifier name or }

3. element_closer: The parser is searching for : or ;

4. previous: The parser is searching for previous release name

5. previous_closer: The parser is searching for ;

Parameters lines – The lines of a version script file

read(filename)
Read a linker map file (version script) and store the obtained releases

Obtain the lines of the file and calls parse() to parse the file

Parameters filename – The path to the file to be read

Raises ParserError – Raised when a syntax error is found in the file

sort_releases_nice(top_release)
Sort the releases contained in a map file putting the dependencies of top_release first. This changes
the order of the list in releases.

Parameters top_release – The release whose dependencies should be prioritized

exception abimap.symver.ParserError(filename, context, line, column, message)
Bases: exceptions.Exception

Exception type raised by the map parser

Used mostly to keep track where an error was found in the given file

Variables

• filename – The name (path) of the file being parsed

• context – The line where the error was detected

• line – The index of the line where the error was detected

• column – The index of the column where the error was detected

• message – The error message

class abimap.symver.Release
Bases: object

A internal representation of a release version and its symbols

A release is usually identified by the library name (suffix) and the release version (suffix). A release contains
symbols, grouped by their visibility scope (global or local).

In this class the symbols of a release are stored in a list of dictionaries mapping a visibility scope name (e.g.
“global”) to a list of the contained symbols:

([{"global": [symbols]}, {"local": [local_symbols]}])

Variables

• name – The release name

4.1. abimap package 17

abimap, Release 0.3.0

• previous – The previous release to which this release is dependent

• symbols – The symbols contained in the release, grouped by the visibility scope.

duplicates()

class abimap.symver.Single_Logger
Bases: object

A singleton logger for the module

This class is a singleton logger factory. It takes advantage of the uniqueness of class attributes to hold a unique
instance of the logger for the module. It logs to the default log output, and prints WARNING and ERROR
messages to stderr. It allows the caller to provide a file to receive the log (the messages will be logged by all
handlers: to stderr if WARNING or ERROR, to default log, and to the provided file)

Variables __instance – Holds the unique instance given by the factory when called.

classmethod getLogger(name, filename=None)
Get the unique instance of the logger

Parameters name – The name of the module (usually just __name__)

Returns An instance of logging.Logger

abimap.symver.bump_version(version, abi_break)
Bump a version depending if the ABI was broken or not

If the ABI was broken, CUR is bumped; AGE and REV are set to zero. Otherwise, CUR is kept, AGE is bumped,
and REV is set to zero. This also works with versions without the REV component (e.g. [1, 4, None])

Parameters

• version – A list in format [CUR, AGE, REV]

• abi_break – A boolean indication if the ABI was broken

Returns A list in format [CUR, AGE, REV]

abimap.symver.check(args)
‘check’ subcommand

Check the content of a symbol version script

Parameters args – Arguments given in command line parsed by argparse

abimap.symver.check_files(out_arg, out_name, in_arg, in_name, dry)
Check if output and input are the same file. Create a backup if so.

Parameters

• out_arg – The name of the option used to receive output file name

• out_name – The received string as output file path

• in_arg – The name of the option used to receive input file name

• in_name – The received string as input file path

abimap.symver.clean_symbols(symbols)
Receives a list of lines read from the input and returns a list of words

Parameters symbols – A list of lines containing symbols

Returns A list of the obtained symbols

18 Chapter 4. Reference

abimap, Release 0.3.0

abimap.symver.get_arg_parser()
Get a parser for the command line arguments

The parser is capable of checking requirements for the arguments and possible incompatible arguments.

Returns A parser for command line arguments. (argparse.ArgumentParser)

abimap.symver.get_info_from_args(args)
Get the release information from the provided arguments

It is possible to set the new release name to be used through the command line arguments.

Parameters args – Arguments given in command line parsed by argparse

abimap.symver.get_info_from_release_string(release)
Get the information from a release name

The given string is split in a prefix (usually the name of the lib) and a suffix (the version part, e.g. ‘_1_4_7’). A
list with the version info converted to ints is also contained in the returned list.

Parameters release – A string in format ‘LIBX_1_0_0’ or similar

Returns A list in format [release, prefix, suffix, [CUR, AGE, REV]]

abimap.symver.get_version_from_string(version_string)
Get the version numbers from a string

Parameters version_string – A string composed by numbers separated by non alphanumeric
characters (e.g. 0_1_2 or 0.1.2)

Returns A list of the numbers in the string

abimap.symver.new(args)
‘new’ subcommand

Create a new version script file containing the provided symbols.

Parameters args – Arguments given in command line parsed by argparse

abimap.symver.update(args)
Given the new list of symbols, update the map

The new map will be generated by the following rules:

• If new symbols are added, a new release is created containing the new symbols. This is a compatible
update.

• If a previous existing symbol is removed, then all releases are unified in a new release. This is an
incompatible change, the SONAME of the library should be bumped

The symbols provided are considered all the exported symbols in the new version. Such set of symbols is
compared to the previous existing symbols. If symbols are added, but nothing removed, it is a compatible
change. Otherwise, it is an incompatible change and the SONAME of the library should be bumped.

If –add is provided, the symbols provided are considered new symbols to be added. This is a compatible change.

If –remove is provided, the symbols provided are considered the symbols to be removed. This is an incompatible
change and the SONAME of the library should be bumped.

Parameters args – Arguments given in command line parsed by argparse

abimap.symver.version(args)
‘version’ subcommand

Prints and returns the program name and version.

Parameters args – Arguments given in command line parsed by argparse

4.1. abimap package 19

abimap, Release 0.3.0

Returns A string containing the program name and version

4.1.4 Module contents

4.2 abimap

20 Chapter 4. Reference

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

5.1 Types of Contributions

5.1.1 Report Bugs

Report bugs at https://github.com/ansasaki/abimap/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

5.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

21

https://github.com/ansasaki/abimap/issues

abimap, Release 0.3.0

5.1.4 Write Documentation

abimap could always use more documentation, whether as part of the official abimap docs, in docstrings, or even on
the web in blog posts, articles, and such.

5.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ansasaki/abimap/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.2 Get Started!

Ready to contribute? Here’s how to set up abimap for local development.

1. Fork the abimap repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/abimap.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv abimap
$ cd abimap/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 abimap tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

22 Chapter 5. Contributing

https://github.com/ansasaki/abimap/issues

abimap, Release 0.3.0

5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/ansasaki/
abimap/pull_requests and make sure that the tests pass for all supported Python versions.

5.4 Tips

To run a subset of tests:

$ py.test tests.test_abimap

5.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

5.3. Pull Request Guidelines 23

https://travis-ci.org/ansasaki/abimap/pull_requests
https://travis-ci.org/ansasaki/abimap/pull_requests

abimap, Release 0.3.0

24 Chapter 5. Contributing

CHAPTER 6

Credits

6.1 Development Lead

• Anderson Toshiyuki Sasaki <ansasaki@redhat.com>

6.2 Contributors

None yet. Why not be the first?

25

mailto:ansasaki@redhat.com

abimap, Release 0.3.0

26 Chapter 6. Credits

CHAPTER 7

Changelog

7.1 0.3.0 (2018-08-03)

• Complete rename of the project to abimap

7.2 0.2.5 (2018-07-26)

• Add tests using different program names

• Use the command line application name in output strings

• Add a new entry point symver-smap for console scripts

• Skip tests which use caplog if pytest version is < 3.4

• Added an alias for pytest in setup.cfg. This fixed setup.py for test target

7.3 0.2.4 (2018-06-15)

• Removed dead code, removed executable file permission

• Removed appveyor related files

7.4 0.2.3 (2018-06-15)

• Removed shebangs from scripts

27

abimap, Release 0.3.0

7.5 0.2.2 (2018-06-01)

• Fixed a bug in updates with provided release information

• Fixed a bug in get_info_from_release_string()

7.6 0.2.1 (2018-05-30)

• Fixed a bug where invalid characters were accepted in release name

7.7 0.2.0 (2018-05-29)

• Added version information in output files

• Added sub-command “version” to output name and version

• Added option “–final” to mark modified release as released

• Prevent releases marked with the special comment “# Released” to be modified

• Allow existing release update

• Detect duplicated symbols given as input

7.8 0.1.0 (2018-05-09)

• First release on PyPI.

28 Chapter 7. Changelog

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

29

abimap, Release 0.3.0

30 Chapter 8. Indices and tables

Bibliography

[ABI] https://en.wikipedia.org/wiki/Application_binary_interface

[API] https://en.wikipedia.org/wiki/Application_programming_interface

[HOW_TO] https://www.akkadia.org/drepper/dsohowto.pdf, How to write shared libraries by Ulrich Drepper

31

https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://www.akkadia.org/drepper/dsohowto.pdf

abimap, Release 0.3.0

32 Bibliography

Python Module Index

a
abimap, 20
abimap.main, 15
abimap.symver, 15

33

abimap, Release 0.3.0

34 Python Module Index

Index

A
abimap (module), 20
abimap.main (module), 15
abimap.symver (module), 15
all_global_symbols() (abimap.symver.Map method), 15

B
bump_version() (in module abimap.symver), 18

C
check() (abimap.symver.Map method), 15
check() (in module abimap.symver), 18
check_files() (in module abimap.symver), 18
clean_symbols() (in module abimap.symver), 18

D
dependencies() (abimap.symver.Map method), 16
duplicates() (abimap.symver.Map method), 16
duplicates() (abimap.symver.Release method), 18

G
get_arg_parser() (in module abimap.symver), 18
get_info_from_args() (in module abimap.symver), 19
get_info_from_release_string() (in module

abimap.symver), 19
get_version_from_string() (in module abimap.symver),

19
getLogger() (abimap.symver.Single_Logger class

method), 18
guess_latest_release() (abimap.symver.Map method), 16
guess_name() (abimap.symver.Map method), 16

M
main() (in module abimap.main), 15
Map (class in abimap.symver), 15

N
new() (in module abimap.symver), 19

P
parse() (abimap.symver.Map method), 16
ParserError, 17

R
read() (abimap.symver.Map method), 17
Release (class in abimap.symver), 17

S
Single_Logger (class in abimap.symver), 18
sort_releases_nice() (abimap.symver.Map method), 17

U
update() (in module abimap.symver), 19

V
version() (in module abimap.symver), 19

35

	abimap
	Why use symbol versioning?
	How to add symbol versioning to my library?
	Installation:
	Usage:
	tl;dr
	Long version
	Import as a library:
	Documentation:
	References:

	Installation
	Usage
	tl;dr
	Long version
	Import as a library:

	Reference
	abimap package
	abimap

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	Changelog
	0.3.0 (2018-08-03)
	0.2.5 (2018-07-26)
	0.2.4 (2018-06-15)
	0.2.3 (2018-06-15)
	0.2.2 (2018-06-01)
	0.2.1 (2018-05-30)
	0.2.0 (2018-05-29)
	0.1.0 (2018-05-09)

	Indices and tables
	Bibliography
	Python Module Index

